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Abstract 

This paper examines the use of location quotients (LQs) in constructing regional input−output 

tables.  Its focus is on the modified FLQ formula proposed by Flegg and Webber (1997).  

Using data for 20 Finnish regions, ranging in size from very small to very large, we 

determine appropriate values for the unknown parameter δ in this formula.  We also develop 

a regression model that can be used to help select an appropriate value for δ.  We find that the 

FLQ yields results far superior to those from standard LQ-based formulae.  Our findings 

should be very helpful to any regional analyst who is contemplating making use of the FLQ 

formula to generate an initial set of regional input−output coefficients.  These coefficients 

could be used either as part of the RAS procedure or as the non-survey foundations of a 

hybrid model.  We consider possible improvements to the FLQ formula but find that 

including a regional specialization term in this formula only marginally enhances its 

performance.  On balance, we would recommend using the original FLQ formula. 
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INTRODUCTION 

Regional economies differ from national economies in several respects, most notably in terms 

of trading relationships.  For instance, intermediate inputs purchased from other regions 

within a given country represent a leakage from the regional economy but are classified as 

domestic production at the national level.  For the regional input−output analyst, the 

estimation of interregional trade flows presents an awkward problem, which is compounded 

by the fact that a very limited amount of regional data is normally available. 

 In principle, the best way of obtaining the data required to construct a regional 

input−output table would be via a well-designed survey, yet that would be prohibitively 

expensive, as well as time consuming, in most cases.  Consequently, analysts are forced to 

resort to indirect methods of estimation.  A common approach is to attempt to ‘regionalize’ 

the national input−output table, so that it corresponds as far as possible to the industrial 

structure of the region under consideration.  Of particular importance is the need to make an 

adequate allowance for interregional trade, as failure to do so is likely to lead to seriously 

overstated sectoral multipliers. 

 A straightforward and inexpensive way  of regionalizing a national input−output table is 

to apply a set of employment-based location quotients (LQs).  For instance, where simple 

LQs (SLQs) are used, the proportion of regional employment in each supplying sector is 

divided by the corresponding proportion of national employment in that sector.  An SLQ < 1 

indicates that a supplying sector is underrepresented in the regional economy and so is held to 

be unable to meet all of the needs of regional purchasing sectors for that input.  In such cases, 

the national input coefficients for all purchasing sectors are scaled downwards by multiplying 

them by the SLQ.  At the same time, a corresponding allowance for ‘imports’ from other 

regions is created.  Conversely, where the SLQ ≥ 1, the supplying sector is judged to be able 

to fulfil all requirements of regional purchasing sectors, so that no adjustment to the national 
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input coefficients is needed.  The estimated regional input coefficients derived via this 

process can subsequently be refined on the basis of any extra information available. 

 Unfortunately, the conventional LQs available − most notably, the SLQ and the cross-

industry LQ (CILQ) − are known to yield greatly overstated regional sectoral multipliers.  

This occurs because these adjustment formulae tend to take insufficient account of 

interregional trade and hence are apt to understate regional propensities to import.  In an 

effort to address this problem, Flegg et al. (1995) proposed a new employment-based location 

quotient, the FLQ formula, which took regional size explicitly into account.  They posited an 

inverse relationship between regional size and the propensity to import from other regions.  

This FLQ formula was subsequently refined by Flegg and Webber (1997).  A further 

refinement was proposed by Flegg and Webber (2000); this aimed to capture the effect of 

regional specialization on the magnitude of regional input coefficients. 

 It is worth noting that the potential uses of the FLQ formula go well beyond the 

mechanical production of a set of regional input coefficients.  In particular, we believe that 

the FLQ is well suited for use as a key part of the hybrid modelling approach.  Hybrid models 

were developed because of dissatisfaction with the inaccuracy of traditional LQ-based 

adjustments, along with the costs and delays associated with survey-based models. 

 According to Lahr (1993, p. 277), hybrid models ‘combine non-survey techniques for 

estimating regional [input coefficients] with superior data, which are obtained from experts, 

surveys and other reliable sources (primary or secondary)’.  Lahr goes on to emphasize the 

importance of using the best possible non-survey methods, so that ‘the sectors and/or cells in 

the resulting [hybrid] model that do not receive superior data are as accurate as possible given 

the resources available’ (1993, p. 278).  Moreover, he remarks that ‘the accuracy of the non-

survey model is even more critical for many advanced hybrid techniques since researchers 

are likely to use information from the non-survey model to identify the superior data that 
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[need] to be obtained’ (ibid.).  In response to these points, we would argue that the FLQ 

offers a cost-effective way of building the non-survey foundations of a hybrid model.
1
 

 In addition, where the necessary data are available, FLQ-generated coefficients can be 

used as the initial values in the application of the RAS iterative procedure.  This would be 

preferable, in our opinion, to using unadjusted national coefficients or coefficients generated 

by the SLQ or CILQ.  Our reasoning here is that RAS employs a proportional scaling of the 

initial set of input coefficients and seeks to minimize differences between these initial 

coefficients and the final adjusted coefficients.
2
  This argument suggests that enhanced results 

could be obtained by making use of a more realistic set of initial coefficients.
 

 As discussed later, almost all of the evidence published so far has been strongly 

supportive of the FLQ formula.  Even so, for this formula to be a useful addition to the 

regional analyst’s toolbox, it is crucial that more guidance, based upon an examination of a 

wider range of regions, is made available with regard to the appropriate value(s) of an 

unknown parameter δ.  This parameter and regional size jointly determine the size of the 

adjustment for interregional trade in the FLQ formula.  The primary aim of our study is to 

offer some guidance on what value of δ to use.  We also aim to shed some further light on the 

possible merits and demerits of the FLQ approach. 

 Our study makes use of the Finnish survey-based national and regional input−output 

tables for 1995, published by Statistics Finland (2000).  These tables identify 37 separate 

sectors.  We examine data for 20 regions of different size, in order to assess the relative 

performance of various LQ-based adjustment formulae and to determine appropriate value(s) 

for the parameter δ.  These regions range in size from very small (0.5% of national output) to 

very large (29.7% of national output). 

 The rest of the paper is structured as follows.  The first section is concerned with the role 

of LQs in a regional input−output model.  The second section examines the properties of the 
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FLQ and how it differs from other LQs.  This is followed by a review of empirical evidence 

on the performance of the FLQ.  We then outline some key characteristics of Finnish regions.  

In the next three sections, we present our analysis of sectoral output multipliers and input 

coefficients for these Finnish regions.  The fundamental assumption that regions use the same 

proportion of intermediate inputs as the nation is examined in the penultimate section.  The 

final section contains our conclusions. 

 

THE REGIONAL INPUT−−−−OUTPUT MODEL 

At the national level, we can define: 

A to be an n × n matrix of interindustry technical coefficients, 

 f to be an n × 1 vector of final demands, 

 x to be an n × 1 vector of gross outputs, 

 I to be an n × n identity matrix, 

where A = [aij].  The simplest version of the input−output model is: 

 x = Ax + f = (I − A)
−1

f (1) 

where (I −−−− A)
−1

 = [bij] is the Leontief inverse matrix.
3
  The sum of each column of this matrix 

represents the type I output multiplier for that sector.  The problem facing the regional analyst 

is how to transform the national coefficient matrix, A = [aij], into a suitable regional 

coefficient matrix, R = [rij].  Herein lies the role of the LQs. 

 Now consider the formula: 

 rij = tij × aij (2) 

where rij is the regional input coefficient, tij is the regional trading coefficient and aij is the 

national input coefficient.
4
  rij measures the amount of regional input i needed to produce one 

unit of regional gross output j; it thus excludes any supplies of i ‘imported’ from other 

regions or obtained from abroad.  tij measures the proportion of regional requirements of 

input i that can be satisfied by firms located within the region; hence, by definition, 0 ≤ tij ≤ 1. 
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 Using LQs, one can estimate the regional input coefficients via the formula: 

 ijr̂ = LQij × aij (3) 

where LQij is the analyst’s preferred location quotient.  However, this adjustment is only 

made in cases where LQij < 1. 

 

CHOOSING AN LQ 

The two most widely used LQs are the SLQ and the CILQ, defined as: 
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where REi denotes regional employment (or output) in supplying sector i and NEi denotes the 

corresponding national figure.  REj and NEj are defined analogously for purchasing sector j.  

TRE and TNE are the respective regional and national totals.  In addition, Round’s semi-

logarithmic LQ (Round, 1978) is sometimes used.  This is defined as: 

  RLQij )]SLQ (1/[logSLQ j2i +≡  (6) 

 In evaluating these alternative formulae, it is helpful to refer to the criteria proposed by 

Round (1978).  He suggested that any trading coefficient is likely to be a function of three 

variables in particular: (1) the relative size of the supplying sector i; (2) the relative size of 

the purchasing sector j; and (3) the relative size of the region.  The first variable is captured 

here by REi/NEi, the second by REj/NEj and the third by TRE/TNE. 

 It is evident that the CILQ takes variables (1) and (2) explicitly into consideration, yet 

disregards (3), whereas the SLQ incorporates (1) and (3) but not (2).  However, the SLQ 

takes account of regional size in a way that we would regard as counterintuitive: for a given 

REi/NEi, the larger the region, the larger the allowance for imports from other regions.  
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Whilst the RLQ allows for all three variables, TRE/TNE enters into the formula in an implicit 

and seemingly rather strange way.
5
  For instance, the effect of applying the logarithmic 

transformation to SLQj instead of SLQi is that a bigger allowance for regional imports would 

be made in a larger region than in a smaller one that was equivalent in all other respects.
6
 

 Flegg et al. (1995) attempted to overcome these problems in their FLQ formula.  In its 

refined form (Flegg and Webber, 1997), the FLQ is defined as: 

  FLQij ≡ CILQij × λ* for i ≠ j (7) 

  FLQij ≡ SLQi × λ* for i = j (8) 

where: 

  λ* = [log2(1 + TRE/TNE)]δ (9) 

As with other LQ-based formulae, the FLQ is constrained to unity.
7
 

 Two aspects of the FLQ formula are worth emphasizing: its cross-industry foundations 

and the explicit role attributed to regional size.  Thus, with the FLQ, the relative size of the 

regional purchasing and supplying sectors is taken into account when determining the 

adjustment for interregional trade, as is the relative size of the region. 

 The inclusion of the parameter δ in the FLQ formula makes it possible to refine the 

function log2(1 + TRE/TNE) by altering its degree of convexity (see Flegg and Webber, 

1997, Figure 2).  0 ≤ δ < 1; as δ increases, so too does the allowance for interregional 

imports.  δ = 0 represents a special case where FLQij = CILQij. 

 Another facet of the FLQ formula is worth noting: the use of SLQi along the principal 

diagonal of the adjustment matrix rather than CILQii = 1.  This procedure, first suggested by 

Smith and Morrison (1974, p. 66), has also been adopted in our calculations of the CILQ.  Its 

aim is to capture the size of industry i, along with the fact that much of the intrasectoral trade 

in a national input−output table becomes interregional trade in a regional table.   

 However, a possible shortcoming of the FLQ formula was highlighted by McCann and 
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Dewhurst (1998), who argued that regional specialization may cause a rise in the magnitude 

of regional input coefficients, possibly causing them to surpass the corresponding national 

coefficients.  In response to this criticism, Flegg and Webber (2000) reformulating their 

formula by adding a specialization term, thereby giving rise to the following augmented FLQ: 

  AFLQij ≡ CILQij × λ* × [log2(1 + SLQj)] (10) 

where the specialization term is applied only when SLQj > 1.  The logic behind this 

refinement is that, other things being equal, increased sectoral specialization should raise the 

value of SLQj and hence raise the value of AFLQij.  This, in turn, would lower the allowance 

for imports from other regions.  This refinement would make sense where the presence of a 

strong regional purchasing sector encouraged suppliers to locate close to the source of 

demand, resulting in greater intraregional sourcing of inputs. 

 

EMPIRICAL EVIDENCE 

There is abundant evidence illustrating the very poor performance of the SLQ and CILQ.  For 

instance, in their classic study of data for the English city of Peterborough in 1968, Smith and 

Morrison (1974) used the SLQ and CILQ to estimate type I sectoral output multipliers.  They 

found that the SLQ overstated these multipliers by 17.2% on average (p. 73).  The CILQ 

generated a mean error of 24.9% but this figure was cut to 19.8% when the SLQ was placed 

along the principal diagonal of the CILQ (ibid.).  Other relevant studies include Harrigan et 

al. (1980), Harris and Liu (1998), Sawyer and Miller (1983) and Stevens et al. (1989).  

Flegg et al. (1995) carried out the first empirical test of the FLQ formula.  Their re-

examination of Smith and Morrison’s data for Peterborough revealed that the weighted mean 

error in estimating the type I sectoral output multipliers could be reduced to about 0.3% by 

using δ ≈ 0.3.
8
  Even so, one should be cautious in reading too much into this particular result 

for δ because of the high degree of aggregation used in Smith and Morrison’s study (73 
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national sectors were aggregated into only 19 regional sectors).  What is more, the sectors 

were aggregated prior to applying LQ-based adjustments for regional imports, which is likely 

to have biased the results (cf. Flegg et al., 1995, p. 557). 

Flegg and Webber (2000) used the survey-based input−output tables for the UK in 1990 

and for Scotland in 1989 to construct consistent 104-sector coefficient matrices.  They then 

derived alternative estimates of the Scottish input coefficients by using the FLQ, AFLQ, SLQ 

and CILQ to adjust the UK-wide data. 

Flegg and Webber employed the following statistics, along with several others, to assess 

the relative performance of the alternative LQ-based formulae: 

  µ1 = Σj wj Σi )r  r̂( ijij − / n (11) 

 µ2 = Σj wj Σi | ijij r  r̂ − | / n (12) 

where ijr̂  is the LQ-based coefficient, rij is the survey-based coefficient, n = 104 is the number 

of sectors and wj is the proportion of employment in sector j.  µ1 was clearly positive for the 

SLQ and CILQ, indicating a general overstatement of the Scottish input coefficients, whereas 

the FLQ with δ ≈ 0.15 yielded µ1 ≈ 0.  The FLQ also invariably outperformed the SLQ and 

CILQ in terms of µ2, although a value of δ > 0.2 was needed to minimize µ2 (ibid., Table 4). 

An important additional finding to emerge from Flegg and Webber’s study was that the 

AFLQ did not outperform the FLQ.  This outcome is somewhat surprising since the AFLQ is 

the only one of the four alternative formulae to permit upward adjustments of input 

coefficients and, in this study,  rij exceeded aij for 5,096 cases out of 10,816 (ibid., p. 567).  

The high proportion of cases of rij > aij may well be the reason why a relatively low optimal 

value of δ was found in this study for the FLQ. 

Tohmo (2004) carried out another examination of the relative performance of the FLQ, 

SLQ and CILQ.  He employed the survey-based input−output table for Finland in 1995 and a 

corresponding table for one of its regions, Keski-Pohjanmaa.  These tables contained the 
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same 37 sectors.  The mean error in estimating the type I sectoral output multipliers was 

15.1% for the SLQ, 13.1% for the CILQ but only −0.3% for the FLQ (ibid., Table 4). 

A novel way of evaluating alternative LQ-based formulae was pursued by Bonfiglio and 

Chelli (2008).  Using a Monte Carlo approach, they randomly generated 1,000 multiregional 

input−output tables for each of 20 ‘regions’, with 20 sectors in each table.  This process 

produced 400,000 sectoral output multipliers.  By aggregating the regional tables, a ‘national’ 

table was produced.  The various formulae were then applied to this national table in order to 

produce alternative estimates of multipliers.  A big advantage of Bonfiglio and Chelli’s 

approach is that it is capable of establishing results that should be valid in general, rather than 

being specific to a particular case study. 

Bonfiglio and Chelli used the following key statistics in their evaluation: 

 mrd = (1/n) Σi Σj Σk )m  m̂( ijkijk − / mijk (13) 

  mrad = (1/n) Σi Σj Σk | ijkijk m  m̂ − | / mijk (14) 

  σ = [(1/n) Σi Σj Σk {( | ijkijk m  m̂ − | / mijk) − mrad}
2
]

 0.5
 (15) 

where mijk and ijkm̂  are the respective true and estimated multipliers for sector k in region j 

relating to table i, mrd is the mean relative distance, mrad is the mean relative absolute 

distance, σ is the corresponding standard deviation and n = 400,000. 

The simulations gave values for the mrd of 39.5%, 36.1% and 39.2% for the SLQ, CILQ 

and RLQ, respectively.
9
  By contrast, for the FLQ with δ = 0.3, the mrd was only 1.4%, 

which indicates minimal bias.  However, this figure hides a substantial amount of offsetting 

of positive and negative errors.  This point is substantiated by the fact that the mrad for the 

FLQ, again with δ = 0.3, was 19.1%.  The corresponding values for the SLQ, CILQ and RLQ 

were 40.3%, 38.0% and 40.2%, respectively.  The similarity of the mrd and mrad statistics 

for the conventional LQs shows that they almost always overestimated the multipliers.  The 
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estimates from the conventional LQs also exhibited much more dispersion: σ was 1.30 for the 

FLQ (with δ = 0.3) but 1.63 for the SLQ, 1.62 for the CILQ and 1.64 for the RLQ.
10

  As 

regards the AFLQ, the simulations reveal that it performed slightly better than the FLQ.
11 

Bonfiglio and Chelli’s findings are consistent with those of other studies in so far as they 

confirm the superior relative performance of the FLQ.
12

  However, all adjustment formulae 

exhibit unusually high values of the mrad.  A possible explanation of this phenomenon is that 

the regional input and import coefficients were randomly generated in the interval 0 to 1, yet 

the input coefficients in real input−output tables are typically fairly small, except for those on 

the principal diagonal.  The wide range of possible values for the rij may well have introduced 

an artificial degree of variation into the randomly generated ‘true’ coefficients and hence 

rendered the simulations less accurate than they might otherwise have been.
 

The studies examined hitherto have all offered evidence supporting the use of the FLQ.  

A contrary position is taken by Riddington et al. (2006), who are highly critical of LQ-based 

approaches in general and of the FLQ in particular.  The authors’ brief was to measure the 

economic impact of water-based tourism at a ‘local’ level for seven defined areas covering 

the whole of Scotland, as well as for one specific area in the eastern Highlands (Moray, 

Badenoch and Strathspey, hereafter MBS) with 2.3% of total Scottish employment.  To this 

end, Riddington et al. used gravity models to build input−output tables for each local area.  In 

addition, for the MBS area, they built both survey-based and LQ-based models to measure 

the impact of angling expenditure. 

A key part of the empirical evidence adduced by Riddington et al. concerns the values of 

just two multipliers: the type II output and expenditure multipliers.
13

  The output multipliers 

are of particular interest.  Here the survey yielded a multiplier of 1.700, whereas the gravity 

model, the SLQ and the CILQ gave estimates of 1.766, 1.549 and 1.858, respectively 

(Riddington et al., 2006, Table 1).
14

  The authors remark that they had expected the LQ-based 
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multipliers to be closer to the Scottish national multiplier of 2.013 (cf. ibid., p. 1077). 

As regards the FLQ, Riddington et al. find that a near-zero value of δ is needed to 

reproduce the survey-based multipliers.
15

 This suggests, of course, that regional size is an 

irrelevant variable, which seems unlikely in the light of the studies reviewed above.  

Moreover, there are several other reasons for querying this finding.  The first is that it relates 

to only one sectoral multiplier and we would argue that is unrealistic to expect the FLQ or, 

indeed, any other technique to produce satisfactory results for every sector in every region.  

Secondly, the ‘parent’ table for Scotland that was used to produce the LQ-based tables 

contained 128 sectors, which were aggregated to only 14.  Considerable aggregation bias can 

occur in such cases, particularly if the LQs are not applied prior to the aggregation (Flegg et 

al., 1995; Sawyer and Miller, 1983).   Riddington et al. do not say what procedure they used.  

Thirdly, as the authors themselves note, the MBS area has a significantly different ‘shape’ to 

that of Scotland as a whole; in particular, it has a very limited number of large employers, an 

industry (whisky) that exports 99% of its output, and very limited services (cf. ibid., p. 1076).  

Indeed, Riddington et al. remark that deriving a local table by modifying the Scottish national 

table makes less sense for the MBS area than for the other, much larger, regions they studied 

(ibid.).  This may be one reason why the LQ-based multipliers were smaller than expected, so 

that a further FLQ-based adjustment for regional size was not required.
16

  Finally, as the 

authors themselves note, their survey had its limitations, so that its use as an accurate 

‘benchmark’ is questionable (cf. ibid., p. 1077).   

We would argue, therefore, that it is by no means evident that a gravity modelling 

approach is superior to the FLQ, especially when its complexity, cost and extensive data 

requirements are borne in mind.  Even so, it is worth reiterating that the FLQ only aims to 

provide a cost-effective way of generating an initial set of regional input coefficients.  These 

should always be scrutinized to check for anomalies and, where appropriate, this analysis 



13 

 

should be backed up by surveys of key sectors.  The MBS area is a good example of a region 

where survey-based data could offer a very useful check on the realism of the most important 

coefficients in the FLQ-based table. 

 

FINNISH REGIONS 

Before considering the relative performance of the different LQ-based formulae, it may be 

helpful to examine the characteristics of the 20 Finnish regions.  The location of each region 

is identified in Figure 1. 

Table 1 and Figure 1 near here 

Table 1 reveals some marked differences in the characteristics of the regions, most 

notably in terms of their relative size.  Regional size can be measured in several different 

ways and the first four columns of Table 1 illustrate some of possibilities.  The measures are 

obviously closely related, and the close relationship between the share of output and the share 

of employees (r = 0.997) is reassuring because the regional modeller typically has to use 

employment data as a proxy for regional output data, which are not normally available.
17

 

Uusimaa is by far the largest region.  The central government is situated in this region 

and it is where firms maintain their headquarters.  It has a high concentration of public sector 

jobs.  Helsinki, the capital city of Finland, is located in Uusimaa.  Electronics manufacturing 

is a major industry.  Uusimaa is also an important node of foreign trade. 

At the opposite extreme, Ahvenanmaa is clearly the smallest Finnish region.  It is also 

unusual in being an insular region. It specializes in fishing and in services − especially 

transport − but it also has some manufacturing, the mainstay of which is the food industry. 

 The other 18 Finnish regions exhibit considerable diversity in terms of orientation.  For 

instance, Satakunta, Pirkanmaa, Päijät-Häme, Kymenlaakso and Etelä-Karjala form a 

manufacturing belt with many manufacturing clusters.  Also, in Varsinais-Suomi, Keski-
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Suomi, Pohjanmaa and Pohjois-Pohjanmaa, the regional industrial structure is characterized 

by manufacturing, and the most specialized industries are wood, metals, petroleum, 

machinery, transport equipment, rubber, electronics and paper.  By contrast, Itä-Uusimaa has 

only a few specialist manufacturing industries, most notably petroleum and chemicals.  In the 

Kainuu region, agriculture, forestry and logging, and mining are more prominent than 

elsewhere.  There is some manufacturing activity; this includes wood, along with medical and 

optical instruments.  Kanta-Häme has many manufacturing industries with above-average 

concentration; these include food, metals, textiles and furniture. 

 Extraction characterizes Etelä-Savo, Pohjois-Savo, Pohjois-Karjala, Etelä-Pohjanmaa, 

Keski-Pohjanmaa and Lappi, and manufacturing’s share of employment is below the average 

for Finland.  The specialist manufacturing industries in these regions are food, wood, 

furniture, textiles and leather.  Some large-scale industry − largely paper, metals, chemicals, 

and rubber and plastic products − is also located in these regions.  Keski-Pohjanmaa and 

Etelä-Pohjanmaa also have many small businesses.  Lappi is an atypical region insofar as it is 

sparsely populated and shares borders with three other countries (Norway, Sweden and 

Russia).  Only its southern border is with another Finnish region. 

 Table 1 also displays some information on the degree of specialization in each region.  

When measured in terms of Herfindahl’s index, H, for all industries, it is evident that 

Ahvenanmaa is the most specialized region in Finland.  Using the same criterion, Uusimaa is 

the next most specialized region.  However, there is not a great deal of variation in the value 

of H for the remaining regions.  The table also reveals that, for most regions, manufacturing 

is more highly concentrated than are industries in general. 

 Another way of attempting to capture the extent of sectoral specialization is by counting 

the number of sectors that are overrepresented in a regional economy, i.e. those with an 

SLQ > 1.  Six regions stand out as being highly specialized inasmuch as they have 18 or more 
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sectors (out of a possible 37) with an SLQ > 1.  Four of these regions (Etelä-Savo, Pohjois-

Savo, Pohjois-Karjala and Etelä-Pohjanmaa) are heavily involved in extraction.  By contrast, 

Kanta-Häme has many manufacturing sectors that show above-average concentration, 

whereas the focus in the Kainuu region is on agriculture, forestry and logging, and mining. 

 At the other extreme, there are two regions where only seven sectors have an SLQ > 1 

and one region with only four SLQs > 1.  Here it is worth noting that Etelä-Karjala and 

Kymenlaakso form part of the manufacturing belt mentioned above, whereas Itä-Uusimaa has 

only a few specialist manufacturing industries.  Indeed, Table 1 shows that Itä-Uusimaa has a 

noticeably lower value of H in terms of manufacturing than the other two regions. 

 Of course, merely counting the number of sectors that have an SLQ > 1 does not take any 

account of the extent to which such sectors are overrepresented in the regional economy, so 

this approach could be misleading.  For instance, both Kainuu and Pohjois-Savo have 20 

sectors with an SLQ > 1, yet the largest SLQ in Kainuu is 5.61, well above the maximum 

value of 2.84 in Pohjois-Savo. 

 The last column of Table 1 shows the number of cases (out of a maximum of 37
2
 = 1369) 

where rij > aij.  Such instances are allowed for via the specialization term, log2(1 + SLQj), in 

the augmented FLQ formula (10), which is applied only when SLQj > 1.  It is a little 

surprising that there is not a more obvious positive association between the last two columns.  

For instance, there are three regions in which 20 sectors have an SLQ > 1, yet these regions 

yield very different numbers of sectors with rij > aij.  This number ranges from 149 (= 10.9%) 

for Etelä-Pohjanmaa to 312 (= 22.8%) for Uusimaa, with a mean of 197 (= 14.4%).
18

 

 

REGIONAL OUTPUT MULTIPLIERS 

As a first step in our evaluation of alternative LQ-based adjustment formulae, we examine 

their relative success in estimating output multipliers.  In doing so, we use each formula to 
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regionalize the survey-based national input−output table for 1995 (Statistics Finland, 2000).  

We then estimate the type I output multiplier for each sector in each region.  Finally, we 

compare these LQ-based estimates with the survey-based estimates for each region (ibid.). 

 Our focus on output multipliers is motivated by their importance in regional analysis, 

along with the fact that many earlier studies have attempted to derive satisfactory estimates of 

such multipliers.  This multiplier analysis will be complemented later in the paper by a 

detailed consideration of regional input coefficients. 

 We now need to consider possible ways of assessing the accuracy of the estimated 

sectoral multipliers in a given region.  The following measures will be examined here: 

  µ1 = (100/n) Σj )m  m̂( jj − / mj (16) 

  µ2 = (100/n) Σj )1m/()m  m̂( jjj −−  (17) 

  µ2* = 100 )1m/()m  m̂( −−  (18) 

  µ3 = 100 Σj qj )m  m̂( jj − / mj (19) 

  µ4 = 100
∑

∑ −
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)mm̂(
 (20) 

  µ5 = (1/n) Σj | jj m  m̂ − | / mj (21) 

  sd = [(1/n) Σj {( | jj m  m̂ − | / mj ) − µ5}
2
]
0.5

 (22) 

where jm̂  is the estimated type I output multiplier for sector j (column sum of the LQ-based 

Leontief inverse matrix) in a given region, mj is the corresponding survey-based multiplier, qj 

is the proportion of regional output produced in sector j and n = 37 is the number of sectors. 

 µ1 is a statistic that has been used in many earlier studies, thereby facilitating 

comparisons.  Another useful characteristic of µ1 is its ability to measure bias.  This is the 

main reason why µ1 is our preferred measure.  Even so, it might be argued that the inclusion 

of the unitary components (direct effects) in the formula tends to exaggerate the apparent 



17 

 

precision of the estimated multipliers, as only the indirect effects need to be estimated.  

Hence some authors (e.g. Lahr, 2001) have opted to use a formula such as µ2.  On the other 

hand, suppose that the true multiplier is very small, say 1.02, while the estimated multiplier is 

1.04.  µ1 and µ2 would record errors of 2% and 100%, respectively.  However, from a 

practical point of view, we would argue that what is important is that the true multiplier is 

very small, so that 1.04 should be judged to be a good estimate, as it would be by µ1. 

 Unfortunately, it was impossible to compute µ2 because, in five regions, mj = 1 for the 

Hunting and fishing sector.  It was also very close to unity in four other regions.  µ2* was 

formulated in an effort to circumvent this problem.  A very different refinement of µ1, to take 

account of the relative importance of sectors, has been incorporated in µ3. 

 A problem with the measures discussed so far is that an apparently good result could 

come about as a consequence of some very large positive and negative errors averaging out to 

zero.  Our next two formulae, µ4 and µ5, represent alternative ways of overcoming this 

problem.  µ4 is Theil’s index of inequality (Theil et al., 1966), whereas µ5 is the well-known 

mean absolute proportional deviation.  Finally, sd (standard deviation) has been included to 

capture dispersion in the absolute proportional errors. 

Table 2 near here 

 Table 2 illustrates the impact on the accuracy of the simulations for individual regions of 

altering the value of δ in steps of 0.05, using µ1 as the criterion.  What is most striking is that 

the optimal values of δ are clustered in the interval 0.25 ± 0.05.  Indeed, the modal value of 

δ = 0.25 produces good estimates of sectoral multipliers for seven regions, with an error well 

below 1%.  The mean error of 0.4% (representing a modest overstatement) when δ = 0.25 is 

also very satisfactory, especially when compared with the outcomes for other values of δ.  On 

the other hand, a δ of 0.25 is clearly too high for the three smallest regions, yet too low for 

several of the larger regions.  Here it is worth noting that, when δ = 0.4, the errors are 
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negative for all regions except Itä-Uusimaa, which suggests that it would not normally be 

right to specify such a high value.  Conversely, apart from Ahvenanmaa, the errors are 

invariably positive − many strikingly so − when δ = 0.15, which indicates that a value this 

low would not be a sensible choice in most circumstances. 

 Although 0.25 is demonstrably the best single value of δ, it does not generate acceptable 

results for many regions, so some further analysis is needed to establish the reasons why.  

One reason has already been alluded to, namely the tendency for the required value of δ to 

rise with regional size.  This tendency is evinced by the fact that the mean error rises from 

0.4% to 1.6% once the size of regions is taken into account.  Another reason why a δ above 

or below 0.25 might be required is that certain regions exhibit unusually high or low 

propensities to import from other regions. 

Figure 2 near here 

 Figure 2 displays alternative LQ-based estimates of each region’s propensity to import 

products produced in other Finnish regions, along with survey-based estimates for 

comparison.
19

  In this diagram, the regions are arrayed from smallest to largest in terms of 

their share of national output.  Whilst the FLQ with δ = 0.25 yields good estimates of these 

propensities for eight regions and adequate estimates for four others, it is striking how much 

the propensity to import is overstated in Ahvenanmaa, Kainuu, Pohjois-Karjala and Lappi.
20

  

This means that a smaller δ is needed to provide satisfactory estimates.  On the other hand, 

the propensity is noticeably understated in Itä-Uusimaa and Varsinais-Suomi, which implies 

that a δ > 0.25 is required.  A final reason why a δ ≠ 0.25 might be required is to capture any 

divergence from the national pattern in a region’s mix of intermediate and primary inputs. 

 In line with the above discussion, we used data for the 20 regions to estimate the 

following regression equation: 

 ln δ = −1.8379 + 0.33195 ln R + 1.5834 ln P − 2.8812 ln I + e (23) 
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where R is regional size measured in terms of output and expressed as a percentage; P is a 

survey-based estimate of each region’s propensity to import from other regions, divided by 

the mean value of this propensity for all regions; I is a survey-based estimate of each region’s 

average use of intermediate inputs (including inputs imported from other regions), divided by 

the corresponding national proportion of intermediate inputs; e is a residual.
21 

With R
2
 = 0.915, the expected signs for all estimated coefficients, and t ratios of 11.66, 

6.25 and −3.33 for the three regressors, the regression appears satisfactory.  This assessment 

is bolstered by the fact that it comfortably passes the χ
2
 diagnostic tests for heteroscedasticity 

(p = 0.591), functional form (p = 0.447) and normality (p = 0.559). 

 To illustrate the potential use of this regression, let us assume that an analyst is 

examining a region such as Lappi, for which R = 3.7, P = 0.854 and I = 0.981.  When 

compared with other regions of roughly the same size, Lappi stands out in Table 2 as 

requiring a lower δ.  Equation (23) works well in this instance, as it yields a δ of 0.202, which 

is a little below the optimal value of δ ≈ 0.209.
22

  It also gives accurate estimates for several 

other regions, including Ahvenanmaa (δ = 0.129) and Uusimaa (δ = 0.375).  Indeed, the 

absolute error is below 0.01 in eight regions, between 0.01 and 0.02 in four more, and 

between 0.02 and 0.03 in another six.  Unfortunately, in the remaining two regions, Itä-

Uusimaa and Etelä-Pohjanmaa, the errors are fairly large (−0.043 and 0.042, respectively). 

 Nevertheless, would an analyst have the necessary data to make use of our regression 

equation?  Calculating the value of R using either output or employment data would be 

straightforward.  However, getting a reasonable estimate of P would be more challenging, yet 

a knowledgeable analyst would surely know whether the region under examination had an 

unusually high propensity to import from other regions (e.g. Itä-Uusimaa, P = 1.262) or an 

unusually low propensity (e.g. Lappi, P = 0.854).  A well-informed guess would be required.  

Likewise, the analyst would need to assess whether the region had an atypical mix of 
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intermediate and primary inputs relative to the national pattern (e.g. Etelä-Savo, I = 0.931, or 

Pohjanmaa, I = 1.030).  Equation (23) could then be used to derive a figure for δ, which 

should be better than merely assuming that δ = 0.25.  Any other relevant information that was 

available could be employed to fine tune this estimate.  As a default, the analyst could assume 

that P = I = 1.  This would entail estimating δ via the equation ln δ = −1.8379 + 0.33195 ln R.  

In the case of Lappi, for example, this would mean using a δ of 0.246 rather than 0.202. 

Table 3 near here 

 The discussion so far has focused on our preferred measure µ1, so we now need to see 

whether the other criteria listed earlier generate comparable results.  At the outset, we should 

note from Table 3 that µ2* also identifies δ = 0.25 as optimal.  Moreover, in the case of µ4 

and µ5, the loss in accuracy from using δ = 0.25 rather than the optimal value is negligible.  

The fact that δ = 0.25 yields the minimum standard deviation is also an important finding, as 

it suggests that the FLQ can simultaneously minimize bias and dispersion.
23

  Even so, the 

sectoral weighting underlying µ3 indicates that the larger sectors typically need a δ < 0.25. 

 Table 3 reveals that the FLQ − regardless of which measure is used − yields much more 

accurate results than the SLQ and CILQ.  The most obvious explanation of this outcome is 

that the SLQ and CILQ do not make sufficient downward adjustments to the national input 

coefficients − to allow for interregional trade − and hence greatly overstate regional 

propensities to import.  The strong upward bias in input coefficients and hence multipliers is 

also demonstrated in Table 3 by the fact that the mean values of µ1 and µ5 are very similar for 

the SLQ and likewise for the CILQ.  This bias is also clearly evident in Figure 2, although it 

is true that the SLQ does perform well in Ahvenanmaa. 

 A key reason why the conventional LQs tend to understate imports is that they disregard 

the problem of cross-hauling, which occurs when a sector simultaneously imports and 

exports the same commodity.  This is a chronic problem in small regions that do not represent 
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a functional economic area (Robison and Miller, 1988) but it is also problematic in larger 

regions (Kronenberg, 2009).  The SLQ rules out the possibility of cross-hauling a priori.  It 

presupposes that a region will import from other regions, yet not export to them, if SLQi < 1 

but do the opposite if SLQi ≥ 1.  The CILQ does not preclude cross-hauling, as some cells in 

a given row of the adjustment matrix can have CILQij < 1, while others can have CILQij ≥ 1.  

Hence imports and exports of commodity i can occur simultaneously.  The problem here is 

that the CILQ does not make adequate allowance for cross-hauling, whereas the FLQ 

attempts to do so by taking regional size into account.
24 

 Although it is obviously desirable to have µ1 as close to zero as possible, so as to 

eliminate any systematic tendency towards overstatement or understatement, µ1 = 0 could 

still arise if some very large positive and negative errors happened to average out to zero.  

Thus, when assessing accuracy, we do also need to look at measures such as µ4 and µ5.  When 

δ = 0.25, the FLQ exhibits an average error of 11.9% for µ4 and 8.2% for µ5.  The higher 

figure for µ4 is due to the fact that, with this measure, simulation errors are squared, which 

puts greater emphasis on larger errors.  For instance, µ5 would treat an error of ±0.1 as 10 

times larger than an error of ±0.01, whereas µ4 would treat the former as 100 times larger 

than the latter.  It is by no means clear that this extreme emphasis on avoiding larger errors is 

warranted. 

 However, is an error of 8.2% unacceptably large?  This is ultimately up to the analyst to 

decide, by weighing up the costs and benefits of increasing the degree of accuracy, e.g. the 

costs of surveying key sectors.  It should also be borne in mind that the 8.2% average error 

arose as a result of using a single figure for δ; this error could be reduced in many cases by 

using a value tailored to the specific characteristics of the region under consideration. 

 Many authors have suggested that measures using absolute values are the most 

satisfactory way of assessing the accuracy of estimated multipliers and coefficients (see, for 
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example, Bonfiglio and Chelli, 2008; Sawyer and Miller, 1983).  What is more, the negligible 

difference of 0.053 in the mean values of µ5 for δ = 0.25 and δ = 0.3 may mask some useful 

information.  Hence a set of disaggregated results is presented in Table 4. 

Table 4 near here 

 Table 4 strongly confirms the earlier finding that the optimal δ tends to rise with regional 

size.  Indeed, five of the largest regions require δ = 0.35, whereas two of the smallest require 

δ = 0.15.  Furthermore, compared with Table 3, there has been a shift towards the right in the 

distribution of results, with 14 of the 20 regions now clustered in the range 0.3 ± 0.05.  

However, only three regions are located in the centre of this range. 

 One might ask whether this rightward shift is explicable in terms of the characteristics of 

the FLQ.  To explore this issue, we examined the sectoral distribution of errors for each 

region when µ1 ≈ 0.  We then increased δ by 0.025 to create a new distribution of errors. 

 A fundamental property of the FLQ is that a rise in the value of δ decreases the extent to 

which any multipliers are overestimated, while increasing the amount of any underestimation.  

When µ1 is used as the criterion, overestimates can be offset by underestimates but this is not 

possible with µ5, as all errors of a given size are treated equally.  We identified nine regions 

where the rise in the value of δ decreased the degree of overestimation by considerably more 

than it increased the degree of underestimation.  For these regions, µ5 typically reached a 

minimum at a somewhat higher δ than it did for µ1.  On the other hand, there were only two 

regions where there was a noticeable movement in the opposite direction.  The overall shift 

rightwards in the distribution of results is, therefore, unsurprising. 

 In the light of the above results, should we accept 0.3 as the best single value of δ?  We 

would suggest not.  Our justification for this view is that raising δ from 0.25 to 0.3 would 

introduce bias that was not previously there, yet yield only a minimal gain in terms of 

accuracy.  We would argue that µ1 is the best criterion to use in selecting a value of δ, 
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whereas µ5 is the best statistic for measuring the resulting degree of accuracy.  On this basis, 

we would recommend using δ = 0.25 as the best single value. 

 

THE FLQ VERSUS THE AFLQ 

At this stage, it seems worthwhile to see whether more accurate estimates of multipliers can 

be obtained by using the augmented FLQ (AFLQ), which is defined in equation (10) and 

includes a measure of regional specialization.  However, when Table 3 was recalculated 

using the AFLQ, the results were found to be very similar indeed to those for the FLQ, in 

terms of both accuracy and the pattern of errors.  Even so, as Table 5 shows for δ = 0.3, the 

AFLQ does yield slightly more accurate results on average than the FLQ. 

Table 5 near here 

 How can one explain the minimal rise in accuracy brought about by using the AFLQ?  

One possible explanation is that, on average across the 20 regions, only 14.4% of sectors 

have rij > aij (see Table 1).  Thus a new formula designed to address the problem of rij > aij is 

unlikely to yield dramatically improved results relative to one that does not admit of this 

possibility.  Another possible explanation is that the specialization term log2(1 + SLQj) in 

equation (10) is mis-specified in terms of its focus on the  purchasing sector j rather than on 

the supplying sector i.  This argument suggests that we should use log2(1 + SLQi) instead. 

 Furthermore, there is a potential problem with using log2(1 + SLQj) to capture the effects 

of greater specialization: a rise in SLQj will raise the denominator of the CILQ (recall that 

CILQij ≡ SLQi/SLQj), which will tend to dampen the effects of the change in SLQj.
25

  

However, contrary to expectations, Table 5 shows that using SLQi rather than SLQj does not 

produce better results. 

 Our findings for the AFLQ are in line with those of Bonfiglio and Chelli (2008, Table 1), 

whose Monte Carlo study revealed the AFLQ to be only slightly more accurate than the FLQ.  
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It is worth noting too the Scottish findings of Flegg and Webber (2000); they found that the 

AFLQ was no better than the FLQ. 

 

REGIONAL INPUT COEFFICIENTS 

The estimation of input coefficients has received much less attention in the literature than 

the estimation of multipliers.  This focus on multipliers can probably be explained by their 

importance in impact analyses, along with the belief that errors in individual coefficients 

tend to have little impact on the multipliers – unless these coefficients happen to be large.  

For instance, Jensen and West (1980) show that more than fifty per cent of the smaller 

coefficients in an input−output table can be set equal to zero before a ten per cent error 

appears in the sectoral multipliers.  Even so, an examination of coefficients is still 

worthwhile, as it can highlight any problematic sectors and identify problems such as bias. 

The following criteria will be used to assess the accuracy of the estimated coefficients: 

  γ1 = Σj Σi )r  r̂( ijij − / (n
2
 − z) (24) 

  )z(n/)rr̂(mse 2
j  i

2
ijij −−=∑ ∑  (25) 

  γ2 = Σj Σi | ijij r  r̂ − | / (n
2
 − z) (26) 

  γ3 = Σj Σi rij | ijij r  r̂ − | / (n Σi rij) (27) 

   γ4 = 100 Σj Σi | ijij r  r̂ − | / Σj Σi rij (28) 

  γ5 = 100
∑ ∑

∑ ∑ −

j  i

2

ij

j  i

2

ijij

r

)rr̂(
 (29) 

where rij is the survey-based coefficient
 
in a given region,

 ijr̂  is the corresponding LQ-based 

coefficient, n = 37 is the number of sectors and z is the number of cells for which rij = 0.
26 

 γ1 is a measure of the extent to which a particular LQ-based method tends to 

overestimate or underestimate the input coefficients.  Minimal bias is clearly a key desirable 
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property but it is also important to consider the dispersion in the values of ).r  r̂( ijij −   Our 

second formula, the mean squared error (mse), is designed to capture both bias and 

dispersion.  It does so by summing the squared bias and variance of )r  r̂( ijij − .
27

 

 The third formula, γ2, complements γ1 by providing a check on the possibility that 

positive and negative errors could offset each other, giving rise to a spuriously accurate set of 

results.  γ3 is a more radical refinement of γ1.  It takes into account the argument, noted 

above, that errors in the largest coefficients tend to have the most impact on the estimated 

multipliers.  γ3 captures the relative size of a particular coefficient via the weight rij / Σi rij.  A 

similar formula is proposed by Lahr (2001, p. 238), although he focuses on the coefficient 

matrix as a whole rather than on particular columns within it.  For this reason, our version 

should be more informative as to the source of simulation errors. 

 γ4 expresses the mean absolute deviation as a percentage of the mean value of rij (Sawyer 

and Miller, 1983).  This relative measure has the merit that comparisons can be made with the 

findings from other studies.  This is not true for the measures considered hitherto. 

 Our final measure is Theil’s index of inequality (Theil et al., 1966).  A very useful 

feature of γ5 is that the mse component of the formula can be decomposed into proportions 

due to bias, variance and covariance (Stevens et al., 1989).
28

  Nonetheless, a demerit of γ5 

should be noted: the use of squared simulation errors means that this statistic can be distorted 

by extreme values. 

 Whilst all of the statistics discussed above possess some desirable properties, each 

measure does have one or more shortcomings.  It seems unwise, therefore, to rely on a single 

statistic as a measure of performance.  Instead, by looking at a range of statistics with 

different properties, one might hope to encompass important characteristics such as bias, 

variance and the relative size of coefficients.  In selecting a subset of possible statistics to 

discuss, we avoided those that incorporated expressions such as ,r/)r  r̂( ijijij − | ijij r  r̂ − | / rij or 
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ij
2

ijij r/)r  r̂( − , which can be inflated by near-zero values of rij.  The χ
2
 statistic is a case in 

point.
29

  Indeed, some further shortcomings of the χ
2
 statistic are identified by Knudsen and 

Fotheringham (1986), who also recommend avoiding the use of r
2
.
30 

Table 6 near here 

 If we focus solely on γ1, then Table 6 shows that δ = 0.25 is incontestably the best single 

value for estimating coefficients.  This outcome is consistent with the result for µ1 in the case 

of the multipliers (see Table 3).  By contrast, the mse and γ5 suggest an optimal δ of 0.2.  This 

difference occurs because these statistics place more emphasis than γ1 upon avoiding large 

errors, a feature that necessitates a somewhat smaller δ in this instance.  The results for γ2 and 

γ4 are also at variance with that for γ1.  Here a higher value, δ = 0.3, is identified as best.  This 

finding can be explained by the use of absolute values.  A similar phenomenon was observed 

with respect to the multipliers; it is also evident in the Scottish findings of Flegg and Webber 

(2000, Table 4).  However, the decreases in the mean values of γ2 and γ4 when δ is raised 

from 0.25 to 0.3 are very small indeed.   

 γ3 is out of line with the other statistics in suggesting the use of δ = 0.1, which yields a 

minimum of 2.747.  Evidently, the largest coefficients in a given column of the regional 

matrix R tend to be understated when a higher value of δ is used.  In many cases, it is the 

intrasectoral coefficients that dominate the columns.  Although we would not recommend 

using δ = 0.1 in general, this finding does suggest that it would be worthwhile to consider 

treating the largest coefficients differently from the remaining coefficients.
 

 The results for γ4 and γ5 reveal a high degree of error in estimating the rij, especially 

when compared with the multipliers.  For instance, when δ = 0.25, the average absolute 

proportionate error is 8.2% for multipliers (see Table 3) but 69.9% for coefficients.  These 

errors are, however, well below those for the SLQ and CILQ. 

 That the errors are greater for coefficients than for multipliers is unsurprising: the 



27 

 

elements of the difference matrix, D = [ ijij r  r̂ − ], are bound to exhibit much more dispersion 

than the differences in the column sums of the Leontief inverse matrices, d' = [ jj m  m̂ − ].
31

  

A great deal of offsetting of errors occurs when computing multipliers.  Therefore, if one’s 

objective is to obtain good estimates of multipliers, this may still be possible even if the 

coefficients are subject to considerable error. 

Table 7 near here 

 Table 7 displays some helpful information on the source of simulation errors.  The 

covariance component is, in all cases, the predominant source of error, whereas bias is the 

least important.  The covariance component captures the lack of a perfect correlation between 

the ijr̂  and ijr  distributions, whereas the variance component arises when these distributions 

have different standard deviations.  The results reveal that the superior performance of the 

FLQ relative to the conventional LQs is due to its ability to reduce all three sources of error.  

However, the biggest reduction is in the covariance component of the mse, whereas the 

smallest is in the bias component.  This is rather surprising because the former is thought to 

be harder to reduce than the latter (cf. Stevens et al., 1989, p. 248).  A final point worth 

noting is that, while the variance component rises along with the value of δ, the covariance 

component does the opposite. 

 

INTERMEDIATE INPUTS 

All LQ-based methods assume identical regional and national technology, i.e. that national 

and regional firms use the same proportions of different inputs to produce a given 

commodity.  Unfortunately, this assumption cannot be tested directly with Finnish data 

because each sector’s imports from other regions are not disaggregated by type of input.  

Instead, we shall test the assumption that each region uses the same mix of intermediate and 

primary inputs as the nation.  Primary inputs include ‘compensation of employees’, ‘other 
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value added’ and imports from abroad.
32

 

Table 8 near here 

 Table 8 displays the results of running the following regression: 

 Ijr = α + βIjn + εjr (30) 

where Ijr is a survey-based estimate of the proportion of intermediate inputs (including inputs 

imported from other regions) used by sector j in region r, Ijn is the corresponding national 

proportion of intermediate inputs, and εjr is a random error term.  Note: n = 36 for nine 

regions owing to the exclusion of the Hunting and fishing sector, for which intermediate 

inputs were either non-existent or extremely close to zero. 

 While Table 8 shows that the null hypotheses α = 0 and β = 1 cannot be rejected at the 

5% level for twelve regions, it also shows that there are statistically significant differences 

between the regional and national use of intermediate inputs for the remaining eight regions.  

These differences are most pronounced for Itä-Uusimaa and Pohjois-Karjala. 

 However, an inspection of the plots of actual versus fitted values revealed that several 

regressions had obviously been affected by extreme observations.  This visual examination 

was backed up by an appraisal of the standardized residuals.  Most notably, in Pohjois-

Karjala, the presence of the atypical sectors 6 (Meat and fish) and 7 (Fruit and vegetables; 

animal and vegetable oils) had the effect of sharply increasing the slope of the regression 

line.
33

  For this region, I6r = 1.2277 and I7r = 1.1742, whereas I6n = 0.8365 and I7n = 0.8376.  

The fact that both I6r and I7r exceed unity can be explained by the existence of subsidies.
34

  

By contrast, I6r = 0.5553 in Itä-Uusimaa, resulting in a relatively flat regression line.
35

  The 

data for sectors 6 and 7 also had a marked impact on the results for several other regions. 

 Another problematic sector was Hunting and fishing.  Although this sector was excluded 

from the analysis in nine cases, its presence elsewhere did cause some problems in terms of 

unduly influencing the position of the regression lines in several regions and worsening the 
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goodness of fit.
36

  Likewise, the rather low R
2
 for Ahvenanmaa can be attributed to the 

outlying observations for three sectors: sector 7, as defined above; Electricity, gas and heat 

supply; and Construction and maintenance of railways, highways and roads.
37

 

 Nevertheless, apart from a few atypical observations, the plots for most regions exhibited 

a fairly close relationship approximating a 45° line, which suggests that it is reasonable to 

assume the same mix of intermediate and primary inputs across regions. 

 

CONCLUSION 

 

Regional analysts rarely have the necessary regional data to build input−output models 

directly and so are forced to resort to indirect methods of estimation.  A straightforward and 

inexpensive approach is to use regional and national sectoral employment (or output) figures 

to compute a set of location quotients (LQs).  Our focus has been on the FLQ adjustment 

formula proposed by Flegg and Webber (1997), which takes the relative size of a region 

explicitly into account.  In this way, the FLQ seeks to minimize the strong upward bias in the 

estimated sectoral multipliers that characterizes conventional LQs such as the simple LQ 

(SLQ) and cross-industry LQ (CILQ). 

 A difficulty in applying the FLQ is the need to specify the value of an unknown 

parameter, δ.  Some survey-based evidence on its possible value is presented for Scotland by 

Flegg and Webber (2000) and for the Italian Marche region by Bonfiglio (2009).  However, 

the generality of results obtained from a single region is always open to question, so our 

primary aim has been to provide more guidance, drawn from a detailed examination of a wide 

range of regions of different size, on the appropriate value(s) of δ. 

 In our case study, we examined data for all 20 Finnish regions, which range in size from 

0.5% to 29.7% of national output.  We used the Finnish survey-based national and regional 

input−output tables for 1995, which identify 37 separate sectors, as a benchmark to evaluate 
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the relative performance of the FLQ and other LQ-based adjustment formulae in estimating 

input coefficients and type I sectoral output multipliers.  We employed a wide range of 

statistical criteria to assess the results.  As expected, the FLQ outperformed the conventional 

LQs by a wide margin, regardless of which criterion was used.  Moreover, an analysis using 

Theil’s index of inequality revealed that the FLQ produced a much closer match between the 

estimated and survey-based input coefficients.  This was true irrespective of whether one 

measured this match in terms of bias, variance or covariance. 

 Using the mean proportional difference, µ1, as the criterion, we found that δ = 0.25 was 

the best single value for estimating multipliers.  This criterion has the desirable property that 

it minimizes bias.  When averaged across regions, the unweighted mean value of µ1 was 

0.4%, compared with −1.9% for δ = 0.3.  By contrast, when the results were weighted by size 

of region, δ = 0.3 gave the best outcome.  There was a discernible tendency for the optimal 

value of δ to rise with regional size.  It is also worth noting that the use of absolute values 

suggested that 0.3 rather than 0.25 might be the best single value of δ.  Nevertheless, when 

averaged across regions, the outcomes for these two values of δ were very similar indeed. 

 It is interesting that our findings are broadly consistent with those of Bonfiglio and Chelli 

(2008), who used a Monte Carlo approach to generate 400,000 sectoral output multipliers. 

Their study indicated an optimal δ ≈ 0.3.  On the other hand, using Scottish data, Flegg and 

Webber (2000) found that the FLQ with δ ≈ 0.15 yielded µ1 ≈ 0.  This relatively low value of 

δ can probably be explained by the fact that almost half of the Scottish survey-based 

coefficients were larger than those in the parent table that was being used in the simulation. 

 Although the FLQ was demonstrably better than the conventional LQs, its performance 

was not as good as we would have wished.  For instance, the unweighted mean absolute 

proportional error, with δ = 0.3, was 8.1% for multipliers.  The weighted mean was 7.6%.  As 

expected, the errors in estimating coefficients were much larger than those for multipliers.  
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This is exemplified by the fact that the unweighted mean absolute proportional error, again 

with δ = 0.3, was 69.7% for coefficients.  Whether these FLQ-based estimates are sufficiently 

accurate to be useful in a practical modelling context is a moot point, something that is 

ultimately up to the potential user to decide.  However, most analysts do seem to be far more 

interested in good estimates of multipliers than they are in good estimates of coefficients. 

 The above-mentioned results were derived using a single value of δ, yet the evidence 

shows that the optimal value of δ is unlikely to be the same in different regions.  Therefore, 

using a value of δ that is tailored to the individual characteristics of regions should enhance 

the performance of the FLQ formula.  Here it is worth noting the finding by Bonfiglio (2009), 

based upon a Monte Carlo analysis, that only one third of regions can be expected to have an 

optimal δ in the interval 0.3 ± 0.05.
38

  Our results indicated a more limited set of possibilities, 

with most regions clustered in the interval 0.25 ± 0.05.  However, when we applied a set of 

weights to the simulations to capture the relative size of the coefficients in each column of the 

regional coefficient matrix, we found that the largest coefficients might need a δ of 0.15 or 

less.  It was evident that these coefficients required special scrutiny. 

 To take account of the tendency for the optimal value of δ to rise with regional size, we 

developed a regression model to assist in choosing a value of δ.  Along with regional size, 

this model seeks to capture any marked differences in regional propensities to import from 

other regions or in the mix of intermediate and primary inputs, so it should help to reduce the 

simulation errors that are bound to occur when applying the FLQ formula.
39

  We also re-

estimated the multipliers using a modified version of the augmented FLQ formula (AFLQ) 

proposed by Flegg and Webber (2000).  However, despite the fact that the AFLQ takes an 

additional factor − regional specialization − into account, it gave only slightly better results. 

 Another issue we explored was how far the mix of intermediate and primary inputs in 

each region differed from that in Finland as a whole.  For most regions, there was a fairly 
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close relationship, approximating a 45° line, between the regional and national proportions of 

intermediate inputs.  Even so, we did find statistically significant differences between the 

regional and national use of intermediate inputs in several regions, although these differences 

were accentuated in many cases by the presence of atypical sectors.  These sectors included 

hunting and fishing; electricity, gas and heat supply; fruit and vegetables; and meat and fish. 

 Taken as a whole, however, the results indicated that our assumption of a common ratio 

of intermediate to primary inputs across regions was reasonable.  This is important because it 

suggests that the values of δ obtained here are, to a large extent, indicative of the required 

adjustments for interregional trade per se, with differences between regional and national 

ratios of intermediate to primary inputs being of much less concern.
40

 

 Whilst we believe that the results reported in this paper are supportive of the use of the 

FLQ, it must be emphasized that this formula can only be expected to generate a useful initial 

set of regional input coefficients.  These initial coefficients should always be evaluated by the 

analyst on the basis of informed judgement, surveys of selected industries, etc.  Here it would 

be wise to focus on the larger coefficients, since it is errors in these that have the greatest 

impact on the multipliers.  In addition, Lahr (1993, p. 287) stresses the importance of 

obtaining superior data for resource-based and ‘miscellaneous’ sectors.  Where aggregation 

of national sectors is necessary, it is essential that the FLQ be applied prior to aggregation.  It 

is crucial too that any regional peculiarities be taken into account, although the accuracy of 

the FLQ-based simulations was not affected in any obvious way in our study by a region’s 

location or by its orientation towards manufacturing or extraction. 

 It is worth emphasizing, finally, that the potential uses of the FLQ formula go well 

beyond the mechanical production of a set of regional input coefficients.  In particular, we 

would argue that the FLQ offers a cost-effective way of building the non-survey foundations 

of a hybrid model.  Also, where the necessary data are available, FLQ-generated coefficients 
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can be used as the initial values in the application of the RAS iterative procedure.  This 

should yield more accurate results than could be obtained by using unadjusted national 

coefficients or coefficients generated by the SLQ or CILQ.
41 
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NOTES 

1. See Harris and Liu (1998), Lahr (1993, 2001) and West (1990) for more discussion of 

hybrid models. 

2. Cf. Bonfiglio and Chelli (2008, p. 244).  In a regional context, the RAS procedure would 

involve minimizing an expression of the form D = Σi Σj )r̂lnr~(lnr~ ijijij − , where ijr~  is the 

RAS-adjusted estimate of the regional input coefficient and ijr̂  is the LQ-based initial 

estimate, subject to the constraints of known values of the vectors of sectoral 

intermediate sales, intermediate purchases and gross output.  For a very helpful 

exposition of the RAS procedure, see Miller and Blair (2009, pp. 313−336).  Also see 

Dietzenbacher and Miller (2009). 

3. See Miller and Blair (2009, chapter 2). 

4. This type of analysis can also be applied to inter-country trade.  See, for example, 

Oosterhaven and Hoen (1998, pp. 507−509). 

5. In a personal communication, Jeffery Round explained that his motivation in developing 

this formula was to devise a simple expression that allowed for all three factors, yet 

avoided the need to introduce an additional parameter.  In addition, he wished to mediate 
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between the SLQ and CILQ outcomes, in such a way that the SLQ, CILQ and RLQ all 

equalled unity when SLQi = SLQj = 1. 

6. See Flegg et al. (1995, pp. 550−551) and Flegg and Webber (1997, p. 796) for more 

discussion of Round’s formula. 

7. The logarithmic transformation in (9) ensures that λ* → 1 as TRE → TNE. 

8. See Flegg et al. (1995, Table 9).  In its original form, the FLQ incorporated an unknown 

parameter β, which can be converted into a δ via the formula: δ = β × (x/y), where R is 

regional size, x = log10[0.30103R / log10(1 + R)] and y = log10[3.32193 log10(1 + R)].  

Given R = 0.0015 for Peterborough, β = 5 is equivalent to δ ≈ 0.3. 

9. It should be noted that the SLQ was not used along the principal diagonal of the CILQ. 

10. In fact, for the FLQ, σ declined from 1.30 for δ = 0.3 to 0.88 for δ = 0.9.  However, we 

would not recommend using a δ > 0.3 because of the strong negative bias that this would 

introduce.  See Bonfiglio and Chelli (2008, Table 1). 

11. The mrad for the AFLQ is 18.8% for δ = 0.3 and 18.3% for δ = 0.4.  The AFLQ requires 

a somewhat higher value of δ than the FLQ to achieve a minimum mrad.  This is in line 

with expectations, as will be explained later in the paper. 

12. Miller and Blair (2009, pp. 361−363) offer an illustrative example using a highly 

aggregated survey-based Chinese data set with three regions and three sectors.  The 

output multipliers for the FLQ and AFLQ exhibit a marked negative bias.  This occurs 

because the authors used δ = 0.3, which is evidently too high for this data set.  Even so, 

the FLQ and AFLQ still perform better than the SLQ and CILQ.  The most accurate 

results are obtained from the RAS and RPC (regional purchase coefficient) methods, 

although it should be borne in mind that these methods also have the most exacting data 

requirements.  The FLQ and AFLQ yield very similar results. 

13. Type II multipliers take the induced spending by households into account. 
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14. It is not stated whether the SLQ was used along the principal diagonal of the CILQ. 

15. Cf. Riddington et al. (2006, p. 1078).  For the MBS region, β = 0.25 entails δ = 0.026. 

16. The CILQ-based multiplier is noticeably skewed by the data for the food processing 

sector.  This is an atypical sector in the MBS area since nearly all of its output is 

exported, while most processed foods are imported from plants throughout Scotland (cf. 

Riddington et al., 2006, p. 1077).  When this dominant sector is excluded, the multipliers 

become 1.666 (survey), 1.750 (gravity model), 1.499 (SLQ) and 1.659 (CILQ). 

17. Output has a correlation of 0.998 with value added and 0.988 with population. 

18. For a more detailed discussion of regional specialization and industrial concentration in 

Finland, see Tohmo (2007, chapters 2−5).  Also see Tohmo et al. (2006). 

19. The domestic import propensity, κ,  for a given region was calculated using the formula: 

 κ = Σj Σi n/)r̂  (a ijij −  

κ represents the average proportion of gross output that is imported from other Finnish 

regions. 

20. We deem an estimate to be ‘good’ if it has an absolute error below 0.015 and ‘adequate’ 

if this error is in the range 0.015 to 0.025. 

21. A log-linear model has some attractive theoretical properties, such as a lognormal error 

term and the fact that δ = 0 when R = 0.  It also gave more accurate results than a linear 

formulation.  We attempted − albeit unsuccessfully − to refine our regression by adding a 

measure of industrial concentration or specialization, ln H, where H is Herfindahl’s index 

(all industries).  The lack of statistical significance of ln H (t = −0.15) can probably be 

ascribed to the limited amount of variation in H across regions (see Table 1).  Only 

Ahvenanmaa and Uusimaa stand out as having noticeably different values of H. 

22. An approximate optimal δ was derived for each region by redoing the calculations with 

smaller steps of 0.025 and then applying linear interpolation. 
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23. Bonfiglio and Chelli (2008, Table 1) obtained a contrary result.  See note 10. 

24. Given the reciprocal nature of the CILQ, a maximum of only ½(n
2
 − n) of the national 

input coefficients will be adjusted downwards.  A novel solution to the cross-hauling 

problem is proposed by Kronenberg (2009).  Gerking et al. (2001, p. 396) stress the 

importance of applying LQs at the most disaggregated level possible, in order to 

minimize bias due to cross-hauling. 

25. This is the reason why the AFLQ requires a higher δ than the FLQ. 

26. z averaged 150.6 (or 11%) across the 20 regions. 

27. ≡∑ ∑ −−≡ j  i

2

ijij

2
)rr̂()}z1/(n{mse

 
γ1

2
 + {1/(n

2
 − z)}Σj Σi{ )r  r̂( ijij −  − γ1}

2
 

28. )sd(r)r̂sd()r1(2)}sd(r)r̂sd({)}m(r)r̂m({)rr̂()}z{1/(n ijij

2

ijij

2

ijijj  i

2

ijij

2
××−+−+−≡∑ ∑ −−

where m( ) and sd( ) denote the mean and standard deviation, respectively, and r is the 

correlation coefficient between ijr̂ and .rij   When divided by the mse, the terms on the 

right-hand side of this identity can be interpreted as the proportions of the mse due to 

bias, to differences in standard deviations and to the lack of a perfect correlation (r = 1) 

between ijr̂ and .rij   Cf. Theil et al. (1966, pp. 29−30). 

29. Flegg and Webber (2000) attempted to circumvent this problem by excluding cases 

where rij < 0.001. 

30. In fact, Knudsen and Fotheringham (1986) argue that the following statistic is the best 

way of comparing the performance of either (i) two or more models in replicating the 

same data set or (ii) a single model in different systems: 

γ6 = 100
∑ ∑

∑ ∑ −

j  i ij
2

j  i
2

ijij
2

r)(1/n

)rr̂()(1/n
 

This statistic is similar to γ5 in its use of squared simulation errors, yet there is an 

important difference between the two statistics: γ6 expresses the root mean squared error 
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as a percentage of the mean value of rij, whereas γ5 uses rij
2
 as the basis for comparison.  

This distinction means that: 

∑ ∑

∑ ∑
=

j  i ij

j  i

2

ij

5

6

r

r
n

γ

γ
 

The fact that this ratio depends on n seems arbitrary.  Moreover, in our view, it is more 

logical to relate the squared simulation errors to rij
2
, as in Theil’s formula, than to rij. 

31. See Miller and Blair (2009, pp. 324−327) for a numerical example.  The detailed results 

of Sawyer and Miller (1983) provide a very clear illustration of the point that errors in 

coefficients are likely to be far greater than those in multipliers. 

32. ‘Other value added’ is essentially a measure of profit or surplus.  It equals ‘value added 

at basic prices’ minus ‘compensation of employees’ plus ‘subsidies on production’ minus 

‘other taxes on production’.  For example, for the agricultural sector in Keski-

Pohjanmaa, 0.7566 = 0.5341 − 0.0789 + 0.3014 − 0.0000.  Source: Statistics Finland 

(2000), Regional accounts (data for 1995). 

33. Omitting these two sectors changed the results to α̂= −0.064, β̂ = 1.068 and R
2
 = 0.806.  

The null hypotheses α = 0 and β = 1 could not be rejected at the 5% level (t = −1.74 and 

0.73, respectively).  The further exclusion of the outlying sector, Electricity, gas and heat 

supply, produced α̂= −0.059, β̂ = 1.036 and R
2
 = 0.857 (t = −1.95 and 0.47). 

34. Product subsidies for sectors 6 and 7 were −0.4398 and −0.2836, respectively, for 

Pohjois-Karjala in 1995, compared with −0.1250 and −0.1343 for Finland. 

35. When sector 6 was excluded, α̂= 0.038, β̂ = 0.862 and R
2
 = 0.830 for Itä-Uusimaa. 

36. For instance, the exclusion of the Hunting and fishing sector in Pohjanmaa altered the 

outcome to α̂= −0.011, β̂ = 1.021 and R
2
 = 0.874.   

37. Omitting these three atypical sectors changed the outcome for Ahvenanmaa to α̂= 0.024, 
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β̂ = 0.900 and R
2
 = 0.748. 

38. Using survey-based data for the Italian Marche region in 1974, Bonfiglio (2009) 

computed a δ of 0.66.  This region is, however, somewhat unusual, in view of its below-

average proportion of intermediate inputs and above-average propensity to import from 

other regions (ibid., Table 5).  Indeed, the author’s results show a probability of only 

0.008 of getting 0.6 ≤ δ ≤ 0.7 (ibid., Table 1). 

39. Bonfiglio (2009) presents an alternative regression model for determining the value of δ.  

He includes variables to capture regional size (RSRP) and the propensity to import from 

other regions (PROP), as we do, but does not include a measure of the divergence 

between regional and national proportions of intermediate inputs.  Unlike us, he finds an 

inverse relationship between the optimal δ and regional size.  He also defines the import 

propensity differently. 

40. Another way of adjusting for differences between regional and national proportions of 

intermediate inputs would be to apply Round’s ‘fabrication’ adjustment, whereby each 

column of the national coefficient matrix is scaled prior to applying LQs (Miller and 

Blair, 2009, pp. 356−357, 361−362; Sawyer and Miller, 1983).  However, this 

adjustment presupposes that α = 0 in equation (30).  Our preferred approach, which we 

believe to be both simpler and more comprehensive, is to use the regression model (23) 

to help determine an appropriate value of δ. 

41. This statement is based on the a priori arguments presented in the Introduction.  We 

intend to carry out an empirical analysis to substantiate it and to measure the extent of 

any improvements in accuracy. 
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Table 1.  Characteristics of Finnish regions in 1995 
 

 

Source: Statistics Finland (2000), Regional accounts 

Region Value 

added 

(%) 

Output 

(%) 
Population 

(%) 
Employees 

(%) 
Herfindahl’s index (1995) SLQ > 1 

(number of 

sectors) 

rij  > aij 

(number of 

sectors) 
Manufacturing All industries 

Ahvenanmaa 0.6 0.5 0.5 0.7 0.189 0.276  14 207 
Keski-Pohjanmaa 1.1 1.2 1.4 1.3 0.157 0.088  15 208 
Kainuu 1.5 1.3 1.9 1.6 0.162 0.080  20 231 
Etelä-Savo 2.5 2.3 3.4 2.9 0.141 0.080  19 216 
Itä-Uusimaa 1.7 2.5 1.7 1.6 0.110 0.067  4 155 
Pohjois-Karjala 2.6 2.5 3.5 3.0 0.115 0.077  18 210 
Etelä-Pohjanmaa 2.8 2.9 3.9 3.5 0.127 0.082  20 149 
Kanta-Häme 2.8 3.0 3.2 3.1 0.119 0.072  18 220 
Etelä-Karjala 2.9 3.2 2.7 2.5 0.207 0.091  7 154 
Päijät-Häme 3.4 3.2 3.9 3.7 0.122 0.075  13 203 
Pohjanmaa 3.4 3.5 3.4 3.4 0.114 0.071  12 156 
Lappi 3.7 3.7 4.0 3.4 0.173 0.085  15 181 
Pohjois-Savo 4.3 3.9 5.1 4.5 0.126 0.085  20 196 
Kymenlaakso 3.9 4.4 3.8 3.7 0.230 0.096  7 150 
Keski-Suomi 4.6 4.5 5.1 4.7 0.161 0.079  12 208 
Satakunta 4.2 5.2 4.8 4.6 0.117 0.069  12 172 
Pohjois-Pohjanmaa 6.0 6.0 7.0 6.1 0.168 0.083  13 249 
Pirkanmaa 8.1 7.7 8.5 8.2 0.112 0.071  14 167 
Varsinais-Suomi 8.4 8.9 8.5 8.9 0.122 0.075  11 204 
Uusimaa 31.6 29.7 23.8 28.6 0.134 0.118  15 312 

Mean     0.145 0.091  14 197 
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Table 2.  Mean percentage differences from survey for the FLQ: sectoral output 

multipliers for 20 Finnish regions in 1995 (measure µ1) 

 

Value of δ 

0.15 0.2 0.25 0.3 0.35 0.4 

Ahvenanmaa −−−−1.50 −4.29 −6.71 −8.72 −10.40 −11.80 

Keski-Pohjanmaa 2.74 −−−−0.11 −2.80 −5.18 −7.29 −9.24 

Kainuu 2.16 −−−−0.86 −3.40 −5.60 −7.45 −9.01 

Etelä-Savo 4.79 2.01 −−−−0.34 −2.42 −4.20 −5.76 

Itä-Uusimaa 12.78 9.81 6.97 4.56 2.38 0.44 

Pohjois-Karjala 5.94 2.51 −0.47 −3.02 −5.23 −7.15 

Etelä-Pohjanmaa 1.52 −−−−0.98 −3.13 −4.96 −6.59 −8.12 

Kanta-Häme 6.80 3.99 1.49 −−−−0.76 −3.18 −5.32 

Etelä-Karjala 5.72 2.95 0.43 −1.79 −3.69 −5.31 

Päijät-Häme 4.93 2.06 −−−−0.45 −2.75 −4.81 −6.64 

Pohjanmaa 6.62 2.85 −−−−0.56 −3.52 −6.08 −8.23 

Lappi 2.59 0.38 −1.59 −3.64 −5.61 −7.39 

Pohjois-Savo 6.11 2.79 −−−−0.45 −3.38 −5.87 −8.05 

Kymenlaakso 7.62 4.98 2.47 0.24 −1.74 −3.53 

Keski-Suomi 6.17 3.42 1.02 −1.29 −3.57 −5.60 

Satakunta 10.30 7.09 4.27 1.75 −−−−0.56 −2.67 

Pohjois-Pohjanmaa 5.71 3.02 0.61 −1.60 −3.65 −5.60 

Pirkanmaa 12.19 3.17 5.82 3.13 0.72 −1.44 

Varsinais-Suomi 7.53 4.87 2.46 0.30 −1.72 −3.59 

Uusimaa 3.60 2.84 2.07 1.28 0.50 −−−−0.26 

Unweighted mean 5.72 2.62 0.39 −1.87 −3.90 −5.71 

Weighted mean 5.95 3.23 1.59 −−−−0.30 −2.05 −3.63 

Note: In this and in subsequent tables, minima are shown in bold type. 
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Table 3.  Assessment of accuracy using different criteria: sectoral output multipliers for 20 

Finnish regions in 1995 (unweighted) 

 

Method 

Criterion 

µ1 µ2* µ3 µ4 µ5 × 100 sd 

SLQ 14.7 59.8 14.2 20.4 15.7 0.1167 

CILQ 15.0 63.3 12.3 19.9 16.4 0.1061 

FLQ (δ = 0.15) 5.7 26.4 3.4 13.1 9.9 0.0763 

FLQ (δ = 0.2) 2.6 10.6 0.5 11.9 8.5 0.0682 

FLQ (δ = 0.25) 0.4 −−−−0.7 −−−−1.7 11.9 8.2 0.0673 

FLQ (δ = 0.3) −1.9 −12.2 −3.7 12.3 8.1 0.0680 

 

 

 

Table 4.  Mean absolute percentage differences from survey for the FLQ: sectoral output 

multipliers for 20 Finnish regions in 1995 (measure µ5×100) 

 

Value of δ 

0.15 0.2 0.25 0.3 0.35 0.4 

Ahvenanmaa 8.28 8.78 9.71 11.03 12.12 13.18 

Keski-Pohjanmaa 9.40 9.18 9.04 9.19 10.35 11.54 

Kainuu 8.96 9.52 10.25 11.02 11.74 12.46 

Etelä-Savo 8.87 7.99 7.99 8.13 8.95 9.53 

Itä-Uusimaa 13.47 11.19 9.10 7.66 6.99 6.79 

Pohjois-Karjala 10.41 9.27 8.90 9.05 9.33 9.74 

Etelä-Pohjanmaa 7.98 7.95 8.56 9.09 9.81 10.62 

Kanta-Häme 12.27 10.84 9.84 9.38 9.14 9.59 

Etelä-Karjala 8.09 6.95 7.09 7.47 7.95 8.88 

Päijät-Häme 9.57 8.64 8.18 7.99 8.37 9.23 

Pohjanmaa 10.95 8.50 7.18 6.56 7.28 9.07 

Lappi 9.20 8.72 8.88 9.32 9.88 10.52 

Pohjois-Savo 8.89 7.66 7.46 7.90 9.14 10.35 

Kymenlaakso 10.29 8.97 8.06 7.81 7.61 7.90 

Keski-Suomi 9.31 8.08 7.34 7.12 7.46 8.55 

Satakunta 10.85 8.24 6.34 5.27 5.10 5.89 

Pohjois-Pohjanmaa 9.09 7.74 7.08 7.53 8.23 8.98 

Pirkanmaa 12.87 9.94 7.55 6.49 6.07 6.17 

Varsinais-Suomi 10.90 9.09 7.68 7.18 7.09 7.64 

Uusimaa  7.87 7.77 7.71 7.66 7.64 7.67 

Unweighted mean 9.88 8.54 8.20 8.14 8.51 9.22 

Weighted mean 9.58 8.15 7.81 7.63 7.80 8.29 
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Table 5.  Mean absolute percentage differences from survey for the FLQ and AFLQ: sectoral 

output multipliers for 20 Finnish regions in 1995 (measure µ5×100, unweighted) 

 

Method 

Value of δ 

0.15 0.2 0.25 0.3 0.35 

FLQ 9.9 8.5 8.2 8.1 8.5 

AFLQ (column-based) 10.7 9.2 8.3 7.9 8.0 

AFLQ (row-based) 10.3 9.0 8.3 8.0 8.0 

 

 

 

Table 6.  Assessment of accuracy using different criteria: input coefficients for 20 Finnish 

regions in 1995 (unweighted) 

 

Method 

Criterion 

γ1 × 10
3 

mse × 10
3
 γ2 × 100 γ3 × 100 γ4 γ5 

SLQ 2.905 0.331 0.474 2.986 78.9 75.3 

CILQ 3.119 0.318 0.510 2.886 85.2 75.2 

FLQ (δ = 0.15) 1.293 0.265 0.441 2.770 73.3 67.6 

FLQ (δ = 0.2) 0.665 0.261 0.428 2.846 71.0 66.7 

FLQ (δ = 0.25) 0.062 0.267 0.422 2.996 69.9 66.9 

FLQ (δ = 0.3) −0.514 0.283 0.421 3.184 69.7 68.1 

FLQ (δ = 0.35) −1.057 0.302 0.424 3.386 69.9 69.8 

 

 

 

Table 7.  Decomposition of mean squared error (mse): input coefficients 

for 20 Finnish regions in 1995 (unweighted) 

 

Method 

 Source of error 

mse × 10
3
 Bias Variance Covariance 

SLQ 0.3310 0.0100 0.0702 0.2508 

CILQ 0.3179 0.0109 0.0651 0.2419 

FLQ (δ = 0.15) 0.2652 0.0026 0.0300 0.2327 

FLQ (δ = 0.2) 0.2615 0.0012 0.0346 0.2257 

FLQ (δ = 0.25) 0.2674 0.0008 0.0489 0.2178 

FLQ (δ = 0.3) 0.2827 0.0011 0.0728 0.2088 

FLQ (δ = 0.35) 0.3023 0.0021 0.1026 0.1976 
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Table 8.  Regressions of regional on national sums of intermediate 

input coefficients for 20 Finnish regions in 1995 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:  H0 is α = 0 for the intercept and β = 1 for the slope.  The critical 

value of t at the 5% level (two-tailed test) is approximately 2.03. 

 

  

 Intercept (|t|) Slope (|t|) n R
2 

Ahvenanmaa 0.055 (1.16) 0.840 (1.45) 37 0.621 

Keski-Pohjanmaa −0.059 (1.67) 1.124 (1.50) 37 0.842 

Kainuu −0.016 (0.40) 0.985 (0.16) 36 0.775 

Etelä-Savo −0.010 (0.26) 0.954 (0.54) 36 0.788 

Itä-Uusimaa 0.070 (2.44) 0.769 (3.49) 37 0.793 

Pohjois-Karjala −0.187 (4.44) 1.422 (4.36) 36 0.864 

Etelä-Pohjanmaa −0.066 (2.28) 1.139 (2.10) 36 0.898 

Kanta-Häme −0.049 (1.35) 1.085 (1.01) 37 0.827 

Etelä-Karjala −0.071 (2.60) 1.133 (2.13) 36 0.906 

Päijät-Häme −0.005 (0.14) 1.008 (0.11) 36 0.825 

Pohjanmaa 0.052 (1.12) 0.899 (0.93) 37 0.663 

Lappi −0.095 (2.79) 1.220 (2.77) 37 0.871 

Pohjois-Savo −0.074 (2.46) 1.190 (2.73) 36 0.896 

Kymenlaakso 0.003 (0.07) 0.955 (0.46) 37 0.732 

Keski-Suomi −0.061 (1.60) 1.140 (1.61) 36 0.835 

Satakunta 0.018 (0.61) 0.910 (1.35) 37 0.842 

Pohjois-Pohjanmaa −0.036 (0.98) 1.110 (1.29) 37 0.828 

Pirkanmaa −0.011 (0.46) 1.014 (0.24) 36 0.901 

Varsinais-Suomi 0.052 (1.81) 0.849 (2.25) 37 0.821 

Uusimaa 0.073 (2.78) 0.843 (2.57) 37 0.846 

Unweighted mean
 

−0.021 1.029  

Weighted mean
 

0.007 0.975  
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01= Uusimaa 

02= Varsinais-Suomi 

04= Satakunta 

05= Kanta-Häme 

06= Pirkanmaa 

07= Päijät-Häme 

08= Kymenlaakso 

09= Etelä-Karjala 

10= Etelä-Savo 

11= Pohjois-Savo 

12= Pohjois-Karjala 

13= Keski-Suomi 

14= Etelä-Pohjanmaa 

15= Pohjanmaa 

16= Keski-Pohjanmaa 

17= Pohjois-Pohjanmaa 

18= Kainuu 

19= Lappi 

20= Itä-Uusimaa 

21= Ahvenanmaa 

 

 

Figure 1.  Finnish regions.  Source: Statistics Finland 
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Figure 2. Estimates of domestic import propensities produced by the survey and by 

LQ-based methods 

 


